STA303: Artificial Intelligence

Games: Expectimax, Monte Carlo Tree Search

Fang Kong

https://fangkongx.github.io/

Part of slide credits: ai.berkeley.edu

https://fangkongx.github.io/

Uncertain Outcomes

Worst-Case vs. Average Case

maxX

—madin_
chance

10 10 9 100

ldea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

Why wouldn’t we know what the result of an action will be?
= Explicit randomness: rolling dice
= Unpredictable opponents: the ghosts respond randomly
= Actions can fail: when moving a robot, wheels might slip

Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

Expectimax search: compute the average score under
optimal play
= Max nodes as in minimax search

= Chance nodes are like min nodes but the outcome is uncertain
= Calculate their expected utilities

|.e. take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10

10

max

chance

9 100

[Demo: min vs exp (L7D1,2)]

Expectimax Pseudocode

def value(state):

N\

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

~

J

/def max-value(state):
initialize v = -0
for each successor of state:

return v

_

~

v = max(v, value(successor))

)

<

)

/def exp-value(state):

initialize v=0

for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

Expectimax Pseudocode

Gef exp-value(state):
initialize v=0

~

for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

1/2

/

1/3

v=(1/2)(8) +(1/3) (24) + (1/6) (-12) =10

1/6

-12

12

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

E]

]

O B

Estimate of true \
400! 300 expectimax value

Y ¥\ (which would
require a lot of
work to compute))

492 362

Probabilities

Reminder: Probabilities

A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

0.25

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Qutcomes: Tin {none, light, heavy}
= Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Some laws of probability (more later):
= Probabilities are always non-negative
= Probabilities over all possible outcomes sum to one

0.50

As we get more evidence, probabilities may change:
= P(T=heavy) =0.25, P(T=heavy | Hour=8am) = 0.60 ?’

0.25

Reminder: Expectations

= The expected value of a function of a random variable is the

average, weighted by the probability distribution over
outcomes

= Example: How long to get to the airport?

Time: 20 min 30 min 60 min
X + X + X
Probability: 0.25 0.50 0.25

What Probabilities to Use?

" |n expectimax search, we have a probabilistic nfgdel E)
of how the opponent (or environment) will be %{v@
any state 2%
= Model could be a simple uniform distribution (roll a d \]
= Model could be sophisticated and require a great deal of
computation
= We have a chance node for any outcome out of our cont Q
opponent or environment
= The model might say that adversarial actions are likely!
E]

" For now, assume each chance node magically comes
along with probabilities that specify the distribution
over its outcomes

Having a probabilistic belief about
another agent’s action does not mean
that the agent is flipping any coins!

Quiz: Informed Probabilities

= Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

= Question: What tree search should you use?

= Answer: Expectimax!

= To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent

0.1 0.9 = This kind of thing gets very slow very quickly

= Even worse if you have to simulate your

AA AA opponent simulating you...

= ... except for minimax, which has the nice
property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism Dangerous Pessimism
Assuming chance when the world is adversarial Assuming the worst case when it’s not likely

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Expectimax
Pacman

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble

Ghost used depth 2 search with an eval function that seeks Pacman _
[Demos: world assumptions (L7D3,4,5,6)]

Assumptions vs. Reality

Adversarial Ghost Random Ghost
i e Won 5/5 Won 5/5
Pacman Avg. Score: 483 Avg. Score: 493
Expectimax Won 1/5 Won 5/5
Pacman Avg. Score: -303 Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble

Ghost used depth 2 search with an eval function that seeks Pacman _
[Demos: world assumptions (L7D3,4,5,6)]

Video of Demo World Assumptions
Random Ghost — Expectimax Pacman

Video of Demo World Assumptions
Adversarial Ghost — Minimax Pacman

Video of Demo World Assumptions
Adversarial Ghost — Expectimax Pacman

Video of Demo World Assumptions
Random Ghost — Minimax Pacman

Other Game Types

Mixed Layer Types

£ 8

= E.g. Backgammon

= Expectiminimax
=" Environmentis an

extra “random
agent” player that

moves after each
min/max agent

= Each node
computes the
appropriate
combination of its
children

Multi-Agent Utilities

= What if the game is not zero-sum, or has multiple players?

= Generalization of minimax:
= Terminals have utility tuples
= Node values are also utility tuples
= Each player maximizes its own component
= Can give rise to cooperation and
competition dynamically...

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Monte Carlo Tree Search

Monte Carlo Tree Search

" Methods based on alpha-beta search assume a fixed horizon
" Pretty hopeless for Go, with b > 300

" MCTS combines two important ideas:

= Evaluation by rollouts — play multiple games to termination from a
state s (using a simple, fast rollout policy) and count wins and losses

= Selective search — explore parts of the tree that will help improve the
decision at the root, regardless of depth

= For each rollout:
= Repeat until terminal:

= Play a move according to
a fixed, fast rollout policy

= Record the result

= Fraction of wins
correlates with the true
value of the position!

" Having a “better”
rollout policy helps

Rollouts

“Move 37"
O
&
o0 ® 58
% .
OO of

MCTS Version O

= Do N rollouts from each child of the root, record fraction of wins
= Pick the move that gives the best outcome by this metric

v

F VVVY YVYVYVYY \ A 4 \ A 4
57/100 39/100 65/100

MCTS Version O

= Do N rollouts from each child of the root, record fraction of wins
= Pick the move that gives the best outcome by this metric

v v

F VVVY YVYVYVYY \ 4 \ A 4
57/100 0/100 59/100

MCTS Version 0.9

" Allocate rollouts to more promising nodes

VVY

15

y VVVY VYVYY vV
77/140 0/10 90/

MCTS Version 0.9

" Allocate rollouts to more promising nodes

v

F VVVY VVVYYVYY \ A 4 \ A 4
61/100 6/10 48/100

MCTS Version 1.0

" Allocate rollouts to more promising nodes

= Allocate rollouts to more uncertain nodes

v

A A 4 A A 4
48/100

61/100

UCB heuristics

UCB1 formula combines “promising” and “uncertain”:

UCBI(n)= ZEZ; L C X \/IOgN(IZIAx(I?ENT(n))

N(n) = number of rollouts from node n

U(n) = total utility of rollouts (e.g., # wins) for Player(Parent(n))
A provably not terrible heuristic for bandit problems

* (which are not the same as the problem we face here!)

MCTS Version 2.0: UCT

= Repeat until out of time:

= Given the current search tree, recursively apply UCB to choose a path
down to a leaf (not fully expanded) node n

= Add a new child cto n and run a rollout from ¢

= Update the win counts from ¢ back up to the root

" Choose the action leading to the child with highest N

UCT Example

Why is there no min or max?

= “Value” of a node, U(n)/N(n), is a weighted sum of child values!

" |dea: as N — o, the vast majority of rollouts are concentrated in
the best child(ren), so weighted average — max/min

"= Theorem: as N — o UCT selects the minimax move

= (but N never approaches infinity!)

Summary

= Games require decisions when optimality is impossible
= Bounded-depth search and approximate evaluation functions

= Games force efficient use of computation
= Alpha-beta pruning, MCTS
" Game playing has produced important research ideas
= Reinforcement learning (checkers)
= |terative deepening (chess)
= Monte Carlo tree search (chess, Go)
= Solution methods for partial-information games in economics (poker)
" Video games present much greater challenges — lots to do!
= h =10, |S| =10%°%°, m = 10,000, partially observable, often > 2 players

